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Introduction

K-Means clustering divides a number of objects into a a priori assigned number (k) of 

groups in such a way  that the among-groups Sum of Squares is maximised. This 

program can perform the clustering on genetic marker data either based on the allele 

frequencies or using an Analysis of Molecular Variance.

This manual starts with some background information on the subject. If you 

don’t like reading manuals (who does?), you can skip the background and proceed to 

the “Input file” and “Simple Mode” sections. If you are familiar with the command 

line and wish to try out more esoteric settings, you should read the section “Command 

line Mode”.

If you are using this on a Mac, I suggest you use my program GenoDive 

(Meirmans & Van Tienderen 2004) instead, which can perform the exact same 

clustering with a more user-friendly interface. GenoDive can be downloaded from my 

website: http://www.patrickmeirmans.com/software/.

If you have any  questions about the program or the method, bug-reports, or 

praise, please don’t hesitate to contact me at: p.g.meirmans@uva.nl.

Good luck, Patrick Meirmans
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K-Means clustering (background)

The method uses a pairwise matrix of distances between all observations. Given a 

certain clustering into k groups, for every group the within-group Sum of Squares is 

calculated by taking the sum of the squared within-group distances. When the 

distances are Euclidean, this is equivalent to calculating the sum of the squared 

distances from the points to the group's centroid. The Error Sum of Squares is then 

found by summing over groups. The amount of variance explained by the grouping is 

then calculated by dividing the Error Sum of Squares by the Total Sum of Squares.

Because the method uses a matrix of distances, it is very flexible as it  can be 

used with many different types of distance indices. For genetic data, a very 

straightforward method is to use it with a matrix of Euclidean distances based on 

within-population or within-individual allele frequencies. On the other hand, the 

method of calculating the Sums of Squares is very similar to that  used by  an Analysis 

of Molecular Variance (Excoffier et al., 1992), so it is also possible to use the Sums of 

Squares from an AMOVA to perform the clustering. Because of it flexibility, the 

method can be performed either at the individual-level or at the populations level. At 

the individual level, individuals are clustered into putative populations, equivalent to 

maximising Fst. At the population level, populations are clustered into groups, 

equivalent maximising Fct.

Using hill-climbing

The classical method to perform K-Means clustering was first developed by 

MacQueen (1967), and is implemented in many statistical programs. The analysis 

starts by assigning every observation at random to one of the k  groups and then 

calculates the Error Sum of Squares. A new clustering is then made by  removing one 

by one each observation and placing it into the group to which centroid it is closest. 

This process is repeated and every iteration the new clustering will have a smaller 

Error Sum of Squares, until at some point convergence is reached. The problem with 

this method is that it can only  climb uphill, so it is very likely  to get stuck at a local 

optimum. Therefore the whole procedure is repeated a number of times (say 100) and 

the best solution is taken from among those repeats. For small datasets, this is a very 

fast and useful method. However, for very complex problems such as a dataset of 

many populations genotyped at many highly  variable loci, the size of the solution 
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space is huge and may contain many millions of local optima. The chance that the 

overall minimum is found is then very small, even when a large number of random 

starts is used.

Using Simulated Annealing

Simulated annealing uses a Monte Carlo Markov Chain (MCMC) that prevents the 

clustering from getting stuck in local optima. The algorithm has many  similarities 

with the hill-climbing approach, but has some important  differences. It  again starts by 

randomly assigning observations to the k  clusters. From that clustering, the MCMC is 

then started which lasts a certain number of user-defined steps. In every step of the 

MCMC, a random observation is selected and placed in a different, randomly  picked, 

cluster. If the clustering is better than before, i.e. the Error Sum of Squares decreases, 

the new situation is accepted. However, there is also a chance that the new situation is 

accepted if the clustering is worse than it was before. This chance depends on the 

difference in the Error Sum of Squares and on what is called the "temperature" of the 

chain. This temperature gradually decreases during the run. Initially, the temperature 

is high and almost all new clusterings are accepted. In the end, when the temperature 

reaches zero, only  the changes that improve the clustering are accepted. The real 

power of the method lies in the middle, where most of the climbing is uphill, but 

every now and then a valley is crossed.

One problem with this method is choosing a suitable starting temperature, if 

this is either too high or too low, the middle part gets very  short and the clustering is 

suboptimal. As a workaround, kMeans implements an adaptive starting temperature. 

A very  high value is used as initial starting temperature, the as long as the acceptance 

rate is too high, the starting temperature is lowered iteratively until a suitable value is 

reached. Despite the improved performance relative to the hill-climbing algorithm, 

multiple repeats may be necessary for the simulated annealing in order to find the 

overall optimum.

Which method to use?

The hill-climbing algorithm is usually much faster than the simulated annealing and 

works rather well for small datasets. However, for datasets with a large number of 

individuals or populations (depending on what is being clustered), the simulated 
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annealing approach usually  returns better results, provided that a suitably  large 

number of steps is used (at least 50.000 is a minimum) and the method is repeated 

several times. In general, I would use both and see which gives the best results. Also 

try several runs to see whether these give wildly different results.

Optimal value of k

Most often, the number of clusters will not be known a priori. In that case, it is 

possible to set a range of values for k and perform the clustering for all values. 

However, this introduces the problem of determining the best clustering among all 

values of k. The percentage of explained variance is unsuitable for this task as it tends 

to increase with increasing k. The kMeans programs provides four different  statistics 

that can determine the number of clusters. The first  is the Calinski-Harabasz (1974) 

pseudo-F-statistic; the optimal clustering is the one with the highest value for the 

pseudo-f statistic. The second is the Akaike Information Criterion (AIC, Akaike, 

1974); here, the optimal clustering is the one with the lowest value of AIC. The third 

is the Bayesian Information Criterion (BIC, Schwarz, 1978); again, the optimal 

clustering is the one with the lowest value. The fourth is the Gap-statistic (Tibshirani 

et al. 2002), which uses a number of generated datasets to obtain a baseline to help 

comparing which number of clusters is the best.

Simulations have revealed that BIC and pseudo-F work well for clustering 

populations and individuals, especially when there is random mating within 

populations (Meirmans in prep., Jombart et al. 2010). However, pseudo-F works 

slightly better for clustering individuals and when there is non-random mating. On the 

other hand, BIC can be calculated for a single cluster (k=1), whereas pseudo-F can 

only be calculated for two or more clusters (k ≥ 2). Therefore, BIC has the benefit  that 

it can be used to determine whether there actually  is any population structure at  all. 

Both AIC and the Gap statistic give much worse results than pseudo-F and BIC, so I 

advice against their use
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Input file

kMeans can only cluster genetic data of an allelic nature, for example microsatellites, 

AFLPs, or SNPs. The data needs to be presented in the same format as the program 

Fstat (Goudet, 1995). This should be a tab-delimited plain text file, with the following 

format:

• The first line contains four numbers: 1) The number of populations, 2) The number 

of loci, 3) The maximum number used to code an allele (this is required by  Fstat, 

but not used by kMeans), 4) The number of digits used to code alleles (1, 2, or 3).

• The following lines contain the locus names, one line per locus. The names should 

not contain any spaces.

• The following lines contains the individual data: first the population (as a number) 

then per locus the diploid genotype at that locus. The genotype should be coded 

with the specified number of digits, using zeroes to fill in any  gaps. So an 

individual heterozygous for the alleles 3 and 4 can be coded as 34, 0304, or 

003004, depending on whether 1, 2, or 3 digits are used per allele. Missing alleles 

should be coded as 0 (or 00, or 000). 

Example input file

2! 3! 99! 2
loc-1
loc-2
loc-3
1! 2424!2424!2727
1! 2424!4502!0101
1! 2424!4502!2701
1! 2424!0232!0000
2! 2446!0202!2701
2! 2424!1717!2727
2! 2424!1702!2701
2! 5050!0202!0127
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Simple mode

For normal purposes, kMeans is pretty simple to use, despite the lack of a graphical 

interface. Just double-click the executable and you will be asked to give the name of 

the input file. This name should be the absolute path of the file, so including the full 

location on the hard drive. On a Mac you can simply drag the file from the Finder 

onto the terminal. When the filename is valid, a few questions more questions are 

asked, and then you will be asked to give the name of the output-file (also here, use an 

absolute path). Then the clustering will start, and all results will be written to the 

outfile, with very minimal information provided via the terminal.

Settings to use

For most uses, both for clustering individuals or populations, I recommend the 

following settings:

• A maximum number of clusters of 15 (the program will automatically scale this 

down if this number is not possible).

• AMOVA for calculating the distances.

• Pseudo-F for determining the optimal number of clusters.

• Simulated annealing as a clustering algorithm.

• 50000 steps for the simulated annealing chain.

• 10 repeats of the algorithm (and do it again with many more repeats if the 

clustering is fast enough).

Command line mode

It is also possible to run kMeans from the command line. The settings should then be 

given as arguments. Every setting has its own flag, which should be followed by  the 

value for that setting (see Table 1). Note that you always have to specify at least one 

setting, otherwise the program will start  in Simple Mode as described above. The 

output will not be written to a file but to the terminal (which you can redirect to a file 

if you want, using >). For example, to perform a clustering of populations from the 

file “in.dat”, using the settings suggested above you can type into the terminal (Mac 

OS X & Linux):

./kMeans -f in.dat -a 1 -k 15 -n 50000 -r 100 > out.txt 
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Table 1. Command line arguments for kMeans settings 

Flag Type Setting Default Description

-f string file name in.dat The name of the input file. The file should be a tab-
delimited plain text file in Fstat format.

-m int optimality 
statistic

0 The statistic that is used for determining the number of 
clusters: 0 = Pseudo-F, 1 = AIC, 2 = BIC, 3 = Gap-
statistic, 4 = PCA-based Gap-statistic

-l int level 1 The level at which to perform the clustering: 0 = 
individuals, 1 = populations

-a int distance 0 The method used for calculating the distances: 0 = 
frequencies, 1 = AMOVA

-s int start k 2 The minimum number of clusters to try, for AIC or 
BIC k=1 is anyway always done

-k int end k 0 The maximum number of clusters to try. When the 
value is too high or 0, the maximum will be set to half 
the number of objects to cluster

-u int algorithm 1 The algorithm to use for clustering: 0 = hill climbing, 
1 = simulated annealing, 2 = both

-n int steps 10000 When the simulated annealing algorithm is used, this 
sets the number of steps in the chain

-r int repeats 100 The number of times the algorithm is repeated, not 
used for the Gap-statistic

-p int permutatio
ns

100 The number of permutations for generating the Gap-
statistic reference distribution

Advanced settingsAdvanced settingsAdvanced settingsAdvanced settingsAdvanced settings

-t double start temp 10000 The initial starting temperature for the adaptive 
heating, should be very high.

-c int steps to 
check

20 The number of steps to look back for checking 
whether to lower the starting temperature.

-d double acceptance 
threshold

0.75 For adaptive heating, when the acceptance rate over 
the last steps is lower than this rate the starting 
temperature is lowered.

-i double reduction 0.5 The fraction by which the starting temperature will be 
lowered when the acceptance rate is too high

-b double burn-in 0 A fraction of the total chain length can be devoted to a 
short prerun, though there is no clear advantage to this 
(0.0)

-v int verbose 
output

0 Verbosity of the output 0 = all output, 1 = only the 
optimal k, 2 = only the table with Sums of Squares, 3 
= only the cluster assignments (0)

-w int loci to use -1 The number of loci to use, a value of -1 will simple 
include all loci.
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